Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Using the Fourier transform, solve the following initial value problem:

$$\begin{cases} u_{tt} - \Delta u = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\ u(x, 0) = g(x) & \text{on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

2. Using the Fourier transform, for a fixed λ and $f \in L^2(\mathbb{R}^n)$ solve the problem:

$$\Delta u - \lambda u = f \quad \text{in } \mathbb{R}^n$$

3. Let \mathcal{H} be a Hilbert space and $\mathcal{B}(\mathcal{H})$ be the bounded operators of \mathcal{H} . Let $\mathcal{K} \subseteq \mathcal{B}(\mathcal{H})$ be the compact operators. Prove that $\mathcal{B}(\mathcal{H})$ is a C^* -algebra. Moreover, prove that \mathcal{K} is an ideal and a hereditary subalgebra of $\mathcal{B}(\mathcal{H})$.

4. Find all the left ideals and hereditary subalgebras of $M_{nn}(\mathbb{C})$.

5. Let \mathcal{A} be a seperable C^* -algebra and $\{\varphi_n\}$ a weak^{*} dense sequence in the state space. Define

$$\varphi = \sum_{n} \frac{1}{2^n} \varphi_n$$

Prove that φ is a state and the representation π_{φ} is faithful.

6. A **Banach limit**, denoted LIM, is a continuous linear functional $\psi : \ell^{\infty}(\mathbb{N}) \to \mathbb{C}$ such that for all $x = \{x_n\}$ and $y = \{y_n\}$ in $\ell^{\infty}(\mathbb{N})$ and complex number α we have:

- (a) If $x_n \ge 0$ for all n, then $\psi(x) \ge 0$
- (b) $\psi(x) = \psi(Sx)$ where $(Sx)_n = x_{n+1}$, i.e. S is the shift operator
- (c) If x is a convergent sequence, then $\psi(x) = \lim x$

Fix a Banach limit LIM on $\ell^{\infty}(\mathbb{N})$ and let $\{e_n\}$ be an orthonormal basis for some seperable Hilbert space \mathcal{H} . Define $\varphi : \mathcal{B}(\mathcal{H}) \to \mathbb{C}$ by $\varphi(A) = \text{LIM}\langle Ae_n, e_n \rangle$. Prove that φ is a state on $\mathcal{B}(\mathcal{H})$. If $(\pi_{\varphi}, \mathcal{H}_{\varphi})$ is the representation defined via the GNS construction, show that $\text{Ker}(\pi_{\varphi}) = \mathcal{K}$ where \mathcal{K} is the ideal of compact operators in $\mathcal{B}(\mathcal{H})$.

7. Let T be a closed, not necessarily bounded operator. Suppose $\rho(T) \neq \emptyset$ and $R_T(\lambda)$ is a compact operator for some $\lambda \in \rho(T)$. Prove that T is a Fredholm operator with compact parametrix.

8. Let *D* be a bounded region in \mathbb{C} such that $\partial D = \partial \overline{D}$, i.e. *D* has closed boundary. Let M_z be the multiplication by *z* operator defined on $L^2(D)$. Prove that $\sigma_{le}(M_z) \cap \sigma_{re}(M_z) = \partial D$ and $\operatorname{ind}(M_z - \lambda) = -1$ for $\lambda \in D$. Moreover show that if $\lambda \notin \overline{D}$, then $M_z - \lambda$ is invertible.