\qquad

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Using the Fourier transform, solve the following initial value problem:

$$
\begin{cases}u_{t t}-\Delta u=0 & \text { in } \mathbb{R}^{n} \times(0, \infty) \\ u(x, 0)=g(x) & \text { on } \mathbb{R}^{n} \times\{t=0\}\end{cases}
$$

2. Using the Fourier transform, for a fixed λ and $f \in L^{2}\left(\mathbb{R}^{n}\right)$ solve the problem:

$$
\Delta u-\lambda u=f \quad \text { in } \mathbb{R}^{n}
$$

3. Let \mathcal{H} be a Hilbert space and $\mathcal{B}(\mathcal{H})$ be the bounded operators of \mathcal{H}. Let $\mathcal{K} \subseteq \mathcal{B}(\mathcal{H})$ be the compact operators. Prove that $\mathcal{B}(\mathcal{H})$ is a C^{*}-algebra. Moreover, prove that \mathcal{K} is an ideal and a hereditary subalgebra of $\mathcal{B}(\mathcal{H})$.
4. Find all the left ideals and hereditary subalgebras of $M_{n n}(\mathbb{C})$.
5. Let \mathcal{A} be a seperable C^{*}-algebra and $\left\{\varphi_{n}\right\}$ a weak* dense sequence in the state space. Define

$$
\varphi=\sum_{n} \frac{1}{2^{n}} \varphi_{n}
$$

Prove that φ is a state and the representation π_{φ} is faithful.
6. A Banach limit, denoted LIM, is a continuous linear functional $\psi: \ell^{\infty}(\mathbb{N}) \rightarrow \mathbb{C}$ such that for all $x=\left\{x_{n}\right\}$ and $y=\left\{y_{n}\right\}$ in $\ell^{\infty}(\mathbb{N})$ and complex number α we have:
(a) If $x_{n} \geq 0$ for all n, then $\psi(x) \geq 0$
(b) $\psi(x)=\psi(S x)$ where $(S x)_{n}=x_{n+1}$, i.e. S is the shift operator
(c) If x is a convergent sequence, then $\psi(x)=\lim x$

Fix a Banach limit LIM on $\ell^{\infty}(\mathbb{N})$ and let $\left\{e_{n}\right\}$ be an orthonormal basis for some seperable Hilbert space \mathcal{H}. Define $\varphi: \mathcal{B}(\mathcal{H}) \rightarrow \mathbb{C}$ by $\varphi(A)=\operatorname{LIM}\left\langle A e_{n}, e_{n}\right\rangle$. Prove that φ is a state on $\mathcal{B}(\mathcal{H})$. If $\left(\pi_{\varphi}, \mathcal{H}_{\varphi}\right)$ is the representation defined via the GNS construction, show that $\operatorname{Ker}\left(\pi_{\varphi}\right)=\mathcal{K}$ where \mathcal{K} is the ideal of compact operators in $\mathcal{B}(\mathcal{H})$.
7. Let T be a closed, not necessarily bounded operator. Suppose $\rho(T) \neq \emptyset$ and $R_{T}(\lambda)$ is a compact operator for some $\lambda \in \rho(T)$. Prove that T is a Fredholm operator with compact parametrix.
8. Let D be a bounded region in \mathbb{C} such that $\partial D=\partial \bar{D}$, i.e. D has closed boundary. Let M_{z} be the multiplication by z operator defined on $L^{2}(D)$. Prove that $\sigma_{l e}\left(M_{z}\right) \cap \sigma_{r e}\left(M_{z}\right)=\partial D$ and $\operatorname{ind}\left(M_{z}-\lambda\right)=-1$ for $\lambda \in D$. Moreover show that if $\lambda \notin \bar{D}$, then $M_{z}-\lambda$ is invertible.

